
Network Research Project Proposal
-- CS 397/497 Selected Topics in Computer Networks, Spring 2022

Yunming Xiao
(yunming.xiao@u.northwestern.edu)

Data Center Coflow Scheduling Design

● Background
● Methodology
● Expected Results

Background - Coflow scheduling
Previous study proposed various centralized or decentralized solutions to manage
the coflows – a set of subflows that have the same objective, and the objective is
achieved only when all subflows are completed.

Model: one-big-switch abstract.

Metrics: coflow completion time

Our Approach

Difficulties:

The coflow scheduling itself is an NP-hard problem.

It has also been proved that decentralized solution cannot be as good as centralized in certain
scenarios.

Our Idea:

However, a centralized approach has a high overhead for collecting data and distribute the
decisions. We instead adopt the decentralized approach based on a new transport-layer
protocol, which has an important properties: without the need to coordinate with other flows on
the same link, the flows are assigned with priorities and can adjust the bandwidth considering the
priorities of the other flows.

Overall, we want to design and evaluate a decentralized policy that would minimize the coflow
completion time based on the new transport layer protocol.

Expected Results

● Complete the simulations based on the one-big-switch abstract
● Evaluate the proposed decentralized policy. Expectation is that it would

generate outcomes that are close to the centralized solutions
● We further want to evaluate our policy on real-world environments and

demonstrate its efficiency

The Privacy Era For DNS

● Background - DNS and Privacy
● Background - Private Information Retrieval
● Methodology and Expected Results (1)
● Methodology and Expected Results (2)

Background - DNS and Privacy

Domain Name System (DNS) is one of the foundation of today’s Internet. Before sending requests to
any website, the users need to send DNS requests to DNS resolvers, which are hosted either by ISPs
or public providers like Google, to resolve the IP address of the domain name.

● DNS with TCP or UDP are in plaintext. This allows
anyone in the WAN to observe the activities of the
users.

● Later, DNS over TLS (DoT) or HTTPS (DoH) adopts
end-to-end encryption to protect the user privacy
from any other in the WAN. However, this still allows
the DNS resolver to know all the activities of the
users.

● A further step is made by Oblivious-DNS (ODNS),
which sets up two non-colluding DNS resolvers,
where one resolver does not know what the user has
requested and the other resolver does not know who
sends the request.

Background - Private Information Retrieval

Private information retrieval refers to a series of protocols which allows a user to retrieve an item from
a server in possession of a database without revealing which item is retrieved. This is achieved by
cryptography primitives.

To put it simple, the easiest way is to ask the database to send all items to the user. This apparently
brings too much overhead. Instead, PIR is a smart way to do similar things without the need to
exchange the whole database.

Complexity: O(n^0.5)

Methodology and Expected Results (1)

Methodology

Our idea is simple: we apply PIR on DNS so that the DNS resolver will have no access to the user activities.

But it comes with a lot of questions:

● how do we know what to cache without knowing what is requested?
● is the performance a issue?
● ……

Therefore, we need to perform a measurement study to understand what are the potential limitation.

Expected Results

Most importantly, we want to understand the cache update policy, domain popularity, CDN impacts, and TTLs

Methodology and Expected Results (2)

Methodology

We build a efficient DNS based on PIR code repository.

Expected Results

Implement a practical DNS resolver with PIR.

Sen Lin
(sen.lin@u.northwestern.edu)

Sen Lin (sen.lin@u.northwestern.edu)

Comparative Analysis of
Software Network Programming
Techniques
A project proposal of CS 397/497 (Spring’22)

mailto:sen.lin@u.northwestern.edu

Description
• Network programming aims to operate low-level

network packets which is different from socket
programming.

• e.g. a router/switch/load balancer

• We’re focusing on software techniques. Programs
are expected to be running on any generic Linux
machines.

• In this project, we’re going to explore some popular
techniques among the community to develop
networks and compare their performance and
flexibility in real production.

Application

Transport

Network

Link

Physical

A peak of potential techniques

Socket

TCP

Netfilter

TC

XDP

NIC

Linux Networking Stack

Tentative plans
• Week 1-2: Get familiar with related concepts

• Week 3: Set up environments

• Week 4: Able to run “hello, world” programs with different techniques

• Week 5: Prepare the midterm presentation

• Week 6-7: Develop a L3-switch (with scheduler) using each technique

• Week 8: Benchmark and collect data

• Week 10: Wrap-up: documents & presentation

Sen Lin (sen.lin@u.northwestern.edu)

A performance-oriented review
over QUIC
A project proposal of CS 397/497 (Spring’22)

mailto:sen.lin@u.northwestern.edu

Description
• QUIC is a new transport layer protocol initially designed

by Google and standardized by IETF (RFC 9000) which
is the bedrock of the next-generation HTTP/3

• QUIC is integrated with multiple modern network
features (0-RTT, multiplexing, connection migration,
etc)

• Easy-to-deploy as it’s built upon UDP

• However, QUIC implementations are infamous for their
poor performance (especially for long flows)

• We’re going to explore the reasons and find
optimization opportunities

Potential causes and workarounds
• Kernel's default (UDP) buffer size limitation

• Natural difference between user-space and kernel-space.

• No hardware off-loading

• QUIC libraries need to traverse the whole kernel network
stack redundantly. Some serial accesses may even worsen
the performance.

• QUIC’s benefits (such as mitigation of handshakes) fade for
large stream transmission in comparison with TCP

Increase the buffer

Process QUIC
packets before

entering the kernel

Can multiplexing

or other features

compensate?

Tentative plans
• Week 1-2: Get familiar with QUIC and its implementations (quic-go/quiche/etc)

• Week 3: Set up environments

• Week 4: Able to run “hello, world” programs with different techniques

• Week 5: Prepare the midterm presentation

• Week 6-7: Benchmark different implementations and use flame graphs and/or
other techniques to find the bottlenecks

• Week 8-9: Try some optimizations

• Week 10: Wrap-up: documents & presentation

Yanzhi Li
(YanzhiLi2026@u.northwestern.edu)

Flash Player:Now & Future

Yanzhi Li

Flash Player
● One of most popular software and plugins before
● Came to the end of life in 2021
● Major Browsers no longer support(However, there are emulators)
● Some websites still rely on Flash
● Flash is still officially supported in mainland China

Try to find out:

● Where are flash still being used?
● Does it cause any problems?
● Can we completely replace them?

What to do?

● Identify where are flash still being used. (Starting from emulators)
● Investigate the reasons why they are still being used
● Investigate flash alternatives

Edge Computing on
Low-end Devices

Yanzhi Li

Edge Computing
● Push computation towards the edge of the network, exploiting smart objects, mobile phones, or network gateways to perform tasks.
● Better Response Time and Transfer rates.

Try to find out:

● How well it works on low-end device?
● Compare performance of local computation and overhead of last node delivery.
● How far can we push the edge nodes?
● Future of edge computing on low-end devices.

https://en.wikipedia.org/wiki/Smart_objects
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Gateway_(telecommunications)

What to do?

● Identify target applications enabled by edge computing
● Identify some low-end devices
● Analyze latency, bandwidth or other metrics of these applications on these

devices with or without using edge computing

